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Abstract—Brain network provides important insights for
the diagnosis of many brain disorders, and how to ef-
fectively model the brain structure has become one of
the core issues in the domain of brain imaging analysis.
Recently, various computational methods have been pro-
posed to estimate the causal relationship (i.e., effective
connectivity) between brain regions. Compared with tra-
ditional correlation-based methods, effective connectivity
can provide the direction of information flow, which may
provide additional information for the diagnosis of brain
diseases. However, existing methods either ignore the fact
that there is a temporal-lag in the information transmission
across brain regions, or simply set the temporal-lag value
between all brain regions to a fixed value. To overcome
these issues, we design an effective temporal-lag neural
network (termed ETLN) to simultaneously infer the causal
relationships and the temporal-lag values between brain
regions, which can be trained in an end-to-end manner.
In addition, we also introduce three mechanisms to bet-
ter guide the modeling of brain networks. The evaluation
results on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database demonstrate the effectiveness of the pro-
posed method.

Index Terms—Brain network, causal inference, temporal-
lag estimation, brain disorder identification.

I. INTRODUCTION

FUNCTIONAL brain networks have been widely used to
understand the principles of brain organization [1], [2]

and explore the sensitive biomarkers of neuropsychiatric dis-
eases [3]. Brain networks depict the complex patterns of in-
teractions between brain regions and provide a powerful tool
for detecting several brain disorders such as autism spectrum
disorder [4] and Alzheimer’s disease [5].
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A brain network can be viewed as a collection of nodes and
edges, where each node represents a brain region defined by the
physiological template, and each edge represents the relation-
ship between two brain regions. Recent years have witnessed an
endless stream of research on functional brain network model-
ing. In general, the relationships represented by edges in these
modeling methods can be divided into two categories: functional
connectivity (FC) and effective connectivity (EC) [6]. FC reflects
a statistical dependence between functional magnetic resonance
imaging (fMRI) signals from distinct brain regions, which assess
the direct or indirect interactions between brain regions. Unlike
FC, EC is defined as the causal influence one brain region
exerts over another, the purpose of which is to determine the
direction of information flow. Due to the lack of directional
information in FC, brain network models based on FC may yield
suboptimal results in identifying abnormal patterns caused by
brain diseases. For example, Li et al. [7] constructed a novel ef-
fective connectivity network for the diagnosis of mild cognitive
impairment (MCI), and the experimental results show that the
EC-based method achieves a significant improvement over the
FC-based method. Chen et al. [8] designed a message-passing
algorithm to estimate the direction of information flow between
brain regions, and the result similarly demonstrated that the EC-
based method significantly outperforms FC-based methods in
detecting disease-related neuroimaging biomarkers. Overall, the
results suggest that EC can provide more effective information
for discriminating brain disorders than traditional FC.

Recently, various computational methods have been proposed
to estimate the direction of information flow between brain re-
gions, which model the problem from different perspectives [9],
[10], [11]. However, these methods have their own limitations
and they cannot accurately infer the direction of information
flow between brain regions in some cases [12]. For example,
Granger causality (GC), one of the most popular methods for
inferring causality between brain regions, assumes that the up-
stream signal will be repeated by the downstream signal with
a certain temporal-lag. However, in practice, this assumption
is often invalid in fMRI due to the presence of noise during
data acquisition [9]. Bayesian network (BN), a widely used
algorithm for constructing brain effective connectivity network
(ECN), restricts the candidate graph structure to be a directed
acyclic graph (DAG). However, accumulating studies show that
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Fig. 1. Illustration of the proposed framework for brain disorder identification. The framework mainly consists of three steps, including data
preprocessing, structure learning, and classification. The data preprocessing step is used to extract the signal values of each brain region from
fMRI images. The structure learning step is adopted to estimate causal effects and temporal-lag values between brain regions. In order to better
model the interaction between brain regions, we introduce three mechanisms to guide the modeling of brain networks. The classification step is
utilized to obtain the final decision result.

functional interactions in the brain are not acyclic due to recip-
rocal polysynaptic connections [13], [14]. Linear non-Gaussian
acyclic model (LiNGAM), a data-driven approach to infer the
direction of information flow between brain regions from fMRI
data, is based on independent component analysis (ICA) to
search for solutions. However, ICA requires acquiring a large
number of time series data, and the performance of LiNGAM is
often not ideal when the fMRI data sample is small [11]. Based
on the above analysis, it can be seen that the previous modeling
methods may only be suitable for some specific situations, while
several strong assumptions cannot be guaranteed to hold.

In addition to the shortcomings mentioned above, many exist-
ing effective connectivity estimation methods ignore a common
problem: the temporal-lag value of the information flow between
different brain regions should be different. For instance, GC
method considers the influence of temporal-lag when inferring
the causality between brain regions, but it sets the temporal-lag
value to a fixed value, equivalent to the time of a complete
brain sampling [15]. BN is based on the Bayesian scoring
metric to search for the potential optimal graph structure, and
the time delay of information transmission is not considered
in the search process [16]. LiNGAM assumes that the time
series signal of each brain region is a linear combination
of all other brain regions, and there is no time lag between
them [11]. Obviously, none of these assumptions correspond to
the actual situation. For example, numerous studies have found
highly reproducible temporal-lag patterns in the blood oxygen
level-dependent (BOLD) signal of healthy subjects [17], [18].

Raatikainen et al. have proved that there are large variations in
temporal-lag of information propagation within the brain [19].

To overcome the shortcomings of traditional ECN estimation
methods, we propose a novel deep learning model, named ef-
fective temporal-lag neural network (ETLN), to simultaneously
infer the direction (effective connectivity network, ECN) and the
temporal-lag value (temporal-lag connectivity network, TCN) of
information flow between brain regions. Different from existing
methods, our method does not impose unrealistic constraints on
the underlying graph structure. Our framework can consider the
influence of temporal-lag while inferring the effective connectiv-
ity structure, while several methods often ignore this point. Fig.
1 illustrates a schematic diagram of the proposed framework.
Specifically, we first extract the blood oxygen signal of each
brain region from fMRI. Then, data extracted from fMRI are fed
into the deep learning model ETLN to estimate the causality and
temporal-lag value between brain regions. Finally, a classifier
is trained based on the constructed brain network to realize
the recognition of abnormal patterns of brain activity. More
importantly, we introduce three new mechanisms to obtain more
precise estimates of causal and temporal-lag effects between
brain regions. For the relationship between ECN and TCN,
we introduce the local consistency mechanism to ensure the
correspondence between the two candidate graphs. The core
idea of the local consistency mechanism is that if there is no
causality between the two brain regions in ECN, their corre-
sponding temporal-lag value in TCN should be 0. In order to
determine whether there is a causal relationship between the two
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brain regions in the candidate ECN, we introduce the adaptive
mechanism. Furthermore, we have an additional constraint on
the data distribution of candidate TCN, that is, the longer the
transmission distance between two brain regions, the larger the
temporal-lag value of the information flow between them.

The main contributions of this paper can be summarized as
follows. First, we propose a new strategy to simultaneously esti-
mate the direction and temporal-lag values of information flow
between brain regions via a deep learning pipeline. Second, our
brain network modeling method can characterize the nonlinear
interaction between brain regions, rather than the traditional
linear interaction. Third, we introduce three new mechanisms
into the proposed ETLN to guide the construction of the brain
network model, which allows for a more accurate assessment
of causal and temporal-lag effects between brain regions. The
proposed method is verified on the public database (Alzheimer’s
Disease Neuroimaging Initiative, ADNI) and achieves promis-
ing performance compared with other popular benchmark ap-
proaches.

II. RELATED WORK

A. Brain Network Estimation Methods

Recently, many studies have found that neurological disorders
are associated with abnormal functional integration between
some brain regions [3], [4]. Over the past few years, several
brain network modeling algorithms have been developed for
the diagnosis of neurological diseases [7], [20], [21], [22].
These typical brain network construction methods can be divided
into two categories from the meaning of functional connection,
including 1) correlation-based methods, and 2) causality-based
methods.

In the domain of brain network analysis, Pearson correlation is
the most popular measure for constructing brain networks, which
is widely used to define the strength of functional connectivity,
i.e., the temporal correlation between signals from different
brain regions. While many meaningful discoveries have been
obtained based on correlation brain networks, it is undeniable
that the correlation brain network model has its inherent lim-
itations. First, correlation-based brain networks are often too
dense to clearly reveal which functional connections are most
relevant to brain disorder [23]. Second, compared with EC, FC
lacks the direction of information flow. It may yield suboptimal
results for brain disorder identification if ignoring the direction
of information flow [24].

Besides, methods to construct effective connectivity net-
works can be divided into two categories: multivariate methods
with constraints and multivariate methods without constraints.
Bayesian network (BN) is a typical constraint-type method,
which has an underlying assumption that the latent graph struc-
ture must be a directed acyclic graph [13]. However, recent re-
search shows that functional connections between brain regions
are not acyclic due to reciprocal polysynaptic connections [14].
It seems that those methods without constraints are superior
to those constraint-type methods. But, those methods without
constraints almost ignore the temporal-lag value of information
flow [17], [18]. More details about temporal-lag will be given
in the next subsection.

TABLE I
DEMOGRAPHIC INFORMATION OF THE USED DATASET

B. Temporal-Lag Value Estimation Methods

In the past few decades, there have been few studies con-
cerning the estimation of information propagation lag between
brain regions. Granger causality (GC) is a popular effective
connectivity estimation method to measure the causal effect
of one brain region on another brain region [9]. It is based
on the idea that the cause of an event cannot come after its
consequence, which is one of the causal discovery methods that
takes into account the influence of temporal-lag. Unfortunately,
the temporal-lag value of GC is set to a fixed value when
searching the causal relationship between brain regions [15].
However, many scholars have found that there is lag variability
among different brain regions, that is, the temporal-lag values
are not consistent between different brain regions, and this
phenomenon has been demonstrated by many studies [25], [26].
In addition to GC, there is another class of studies that define the
temporal-lag value across brain regions as a cross-correlation
function between two BOLD signals [17], [27]. This type of
approach also has its own drawbacks. The first controversial
point is that the definition of temporal-lag may be too simple and
does not correspond to the real situation. The second point is that
this method separates the calculation of temporal-lag value from
the identification of causality. The temporal-lag should be zero
when there is no causality between two brain regions, which is
not considered in the definition of such methods.

III. DATA ACQUISITION AND PROCESSING

In this study, we used a total of 149 subjects’ resting state
fMRI data from the publicly available Alzheimer’s Disease
Neuroimaging Intiative (ADNI) database,1 which includes nor-
mal controls (NC), early MCI (eMCI), and late MCI (LMCI).
Notably, some subjects in the ADNI dataset were recruited
at regular intervals, which lead to the existence of different
subjects belonging to the same subject. As discussed [28], such
case can bring the data leakage issue. Because the samples of
the same subject collected at different times could be divided
into the training set and test set, respectively, which brings an
unfair evaluation. Therefore, in order to make the subsequent
evaluation results more convincing, we deduplicate the dataset
to ensure that there are no two samples from the same subject.
The demographic information can be listed in Table I.

In this dataset, each subject signed the written informed
consent form after a full written and verbal explanation. This
research was approved by the Research Ethics Board of ADNI.2

All subjects were scanned with the same protocol using 3.0 T
Philips Achieva scanners. The scanning parameters are as fol-
lows: repetition time (TR) = 3000 ms, echo time (TE) = 30 ms,

1[Online]. Available: http://adni.loni.ucla.edu
2[Online]. Available: http://adni.loni.usc.edu/study-design/ongoing-investi

gations/
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flip angle = 80◦, imaging matrix = 64× 64, slices = 48 and
slice thickness = 3.3 mm. For fMRI data, we apply the standard
procedures as follows. First, the first 5 volumes of each subject
were discarded before preprocessing to avoid noise signals,
and then the remaining 135 volumes were reserved for the
subsequent analysis. All the functional images were registered to
the first image and transformed into the Montreal Neurological
Institute (MNI) space with a resample voxel size of 3× 3× 3
mm3. Subsequently, Conn Toolbox 20b,3 a Statistical Para-
metric Mapping (SPM12) based preprocessing pipeline, was
used to perform outlier detection, direction segmentation and
normalization, linear detrending, and functional smoothing with
a Gaussian kernel of 8 mm full width half maximum (FWHM),
etc. Finally, the time series of each brain region is extracted from
the preprocessed images based on the AAL atlas.

IV. METHODOLOGY

Previous fMRI studies for inferring causality in brain regions
suffer from two shortcomings. First, existing methods often
impose certain restrictive assumptions on candidate graphs when
inferring the causal relationship between brain regions, and the
plausibility of these methods has been questioned [13]. Second,
most methods ignore the influence of temporal-lag, or simply set
the temporal-lag value of all brain regions to a fixed value [15].
To overcome the two issues, we propose a novel GAN-based
neural network, named effective temporal-lag network (ETLN),
to simultaneously learn causality and temporal-lag values be-
tween brain regions. We provide the details of the proposed
ETLN below.

A. Overview of ETLN

The detailed structure of ETLN is shown in Fig. 2, which
embeds the causal relationship and temporal-lag values into a
generator network as parameters to be optimized. To clearly
describe the proposed model, we first give notations as follows.
Let X ∈ Rv×t denote the obtained time series data from pre-
processed fMRI images, where v and t represent the number
of brain regions and the length of the time series, respectively.
D ∈ Rv×(t−1) is the first-order differences of the time series
data X. Notably, X and D are jointly used as the input of the
generator network for training, and the dimensions of both are
v × (t− 1). The reason why the dimension of X is not v × twill
be given in Section IV-B. Based on the two inputs, the generator
network will generate fake time-series data X̂ that can match the
real time-series data X as closely as possible. The discriminator
network takes real fMRI time series data X and fake time series
data X̂ as inputs and tries to find a mapping that can distinguish
them. The generator network is composed of v causal structure
inference modules, where each module is designed to search
for the direct causes of the corresponding brain region and the
temporal-lag values from these causes to the brain region. In
the causal structure inference module, we embed two gates,
namely the causal gate C :,i ∈ Rv×1 and lag gate L:,i ∈ Rv×1,
to preserve the causal effects and temporal-lag values from

3[Online]. Available: https://web.conn-toolbox.org/

other brain regions to the i-th brain region. After the model
is well-trained, the causal relationship and temporal-lag values
between v brain regions can be obtained from the parameters
of the generator network. As shown in Fig. 2, by splicing the
causal parameters and lag parameters of all brain regions, i.e.,
the causal and lag gates of each brain region, two matrices with
dimensions equal to v × v can be obtained, which is the solution
we have been looking for, namely the effective connectivity
network C ∈ Rv×v and the temporal-lag connectivity network
L ∈ Rv×v.

B. Formulation of Structure Inference

The current mainstream methods are based on the idea of mul-
tivariate regression to estimate the causal relationship between
variables [29], [30]. The main advantage of these methods is that
they are data-driven and do not take any restrictive assumptions
about the structure of the causal graph. Such methods can
retrieve excitatory, inhibitory, and bidirectional connections be-
tween variables. The core idea behind them is that each univari-
ate component Xi,: is a mixture of the remaining components
Xj,:, j �= i, and their general form can be defined by

arg min
C:,i

‖ Xi,: −CT
:,iX ‖22, (1)

where X ∈ Rv×t is the time series data extracted from fMRI,
and Xi,: denotes the i-th row of X. C :,i = [C1,i, . . . ,Cv,i] is
the regression coefficients, which denotes the causal effect of
all other brain region on the i-th brain region. The superscriptT

denotes the transpose operation. Besides, Ci,i is set 0 to avoid
self-loops.

However, such methods ignore the effects of the temporal-lag.
The transmission of information between two brain regions takes
a certain amount of time, even if the spatial distance between
the two brain regions is very close. Therefore, considering the
influence of the temporal-lag, (1) can be reformulated as follows:

arg min
C:,i, L:,i

‖ Xi,: − fi(C :,i,X,L:,i,D) ‖22, (2)

where the output of fi(·) is the predicted signal value of i-th
brain region. The specific definition form of fi(·) will be given
below. X is used to model the causal relationship between brain
regions, and matrix D is the first-order difference time series of
X, which is used to model the temporal-lag relationship between
brain regions. The reason why D can model the temporal-lag
relationship between brain regions will be discussed later. Sim-
ilar to the above-mentioned methods, the core idea behind our
approach is that the signal value of each brain region can be
jointly generated by the causal and temporal-lag effects of all
other brain regions on that brain region. Likewise, Li,i is set to
0 to avoid self loops.

A key question is how to simultaneously model causal and
temporal-lag relationships between brain regions, namely the
specific form of fi in (2). For clarity, we show the schematic
diagram in Fig. 3. Suppose Xi,: and Xj,: represent the time
series data of two brain regions, and there is a causal link from
Xj,: toXi,:, which can be denoted asXj,: → Xi,:. A schematic
diagram of the information transmission between two brain
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Fig. 2. The detailed structure of ETLN. The time series data X and its first-order difference D of each subject are fed into the generator network
to estimate causal effects and temporal-lag values between v brain regions. Based on the two inputs, the generator network will generate fake
time-series data X̂. The objective of the discriminator network is to distinguish whether the input samples are from real data X or fake data X̂.
It is worth noting that there are differences in splicing causal and lag gates across brain regions. According to (4), it can be found that there is a
transpose relationship between C and L. Therefore, we splice the causal gate in a row-first manner, and the lag gate in a column-first manner.

regions is shown on the right side of Fig. 3. However, these meth-
ods often ignore the influence of temporal-lag, and the causal
effect between two brain regions is defined as Xj,p → Xi,p.
Xi,p represents the signal value of the i-th brain region at the
p-th time point. This type of methods assumes that the cause
and effect can be produced at the same moment, i.e., there is no
time delay in the transmission of information between two brain
regions, also known as an instantaneous effect.

Several studies have demonstrated that there is a temporal-lag
in the transmission of information across brain regions [19], [31],
and the range of temporal-lag is shorter than the measurement

rate of fMRI [32]. Therefore, the true causal effect between two
brain regions should be defined asXj,p → Xi,(p+Lj,i), the most
crucial point is that the moment when the cause occurs should
be before the moment when the effect occurs. Lj,i denotes the
temporal-lag value from the j-th brain region to the i-th brain
region. In addition to instantaneous and true causal effects, we
argue that there is also a temporal-lag effect. The temporal-lag
effect should be from the instantaneous effect to the true causal
effect along the time dimension, as shown by the red directed
line in Fig. 3. According to the law of vector addition, we can
deduce that the true causal effect should be equal to the sum of
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Fig. 3. Schematic diagram for temporal-lag relationship description.

the instantaneous effect and the temporal-lag effect. Based on
this, we can derive the following equation:

Cj,i ·Xj,p = Xi,p +Lj,i · (Xi,p+1 −Xi,p) , (3)

where the term Cj,i ·Xj,p means the true causal effect. Xi,p

corresponds to the instantaneous effect, and the term Lj,i ·
(Xi,p+1 −Xi,p) represents the temporal-lag effect. General-
izing (3) to a multivariate case, we can obtain

X̂ = CT ×X −L×D,

D =
100

TR
· (X :,2:t −X :,1:t−1) ,

with Ci,i = 0,Li,i = 0, i = [1, . . . , v], (4)

where X̂ represents the predicted time series data, and D is the
first-order difference of matrix X. X :,2:t denotes all samples of
matrix X from column 2 to column t. The value ranges of causal
gate C and lag gate L are set in the range of [-1, 1] and [0,
1], respectively. It is worth noting that the dimension of matrix
D is v × (t− 1). Since the causal structure inference module
performs pairing training based on the samples of X and D, thus
the dimension of the two needs to be consistent. In this case,
the last column of the matrix X is discarded, so the dimension
of X in Fig. 2 is v × (t− 1). Besides, the numerical range of
D is limited by multiplying by the constant 100

TR . The reasons
for this can be attributed to the following points. First, many
studies based on other imaging techniques have reported that
the signal transmission delay across brain regions is in the range
of 0-100ms [12], [25], [26], which is much smaller than the
measurement time interval of fMRI used in this paper. Second,
this design is more conducive to the training of ETLN. Since the
causal structure inference module is a two-branch network, if
the lag gate is represented by the real numerical range of 0-100,
it will lead to the numerical imbalance of the two branches,
making the model difficult to train. After setting a 100

TR bound
for D, the lag gate can be set in the range of 0-1, which helps to
solve the imbalance problem between the two branches.

C. Constraint Mechanisms

In addition to giving a formal definition, we introduce
three mechanisms: local consistency mechanism, adaptive
mechanism, and spatial constraint mechanism, to better guide
the modeling of brain networks. The details of the three mech-
anisms will be given below.

It is worth noting that there is local consistency in the causal
and temporal-lag relationships between brain regions. Specifi-
cally, for those brain regions with a causal link, the temporal-lag
value between them is unclear. But for those brain regions
without the causal link, the temporal-lag value between them
should be 0. As no information is transferred between two
brain regions, which indicates that no time delay between them.
Therefore, a local consistency loss is introduced to ensure that
the temporal-lag value of those brain regions without a causal
link is 0, and its calculation can be defined as follows:

index = Ψ(C, μ) ,

Llocal = CE
(
�Lindex,index, �Z

)
, (5)

where μ is a threshold for determining whether there is a causal
link between brain regions. The absolute value of the weights
in C less than μ is considered as no causal link between brain
regions.Ψ(·) returns a set that includes the indices of those brain
regions without causal links. Lindex,index is the induced sub-
graph of matrix L. Z is a zero matrix with the same dimension
as Lindex,index. The symbol � means to convert a matrix to a
vector, and CE refers to the cross-entropy loss.

For the threshold μ in (5), it is usually defined in two ways.
First, it can be set to a fixed value, and the other is to introduce a
dynamic mechanism. Second, the value of μ is not fixed, and its
value varies under different situations. Due to differences among
individuals, we utilize the second way to set different values of
μ. To achieve this, we introduce an adaptive mechanism to assess
whether there is a causal link between brain regions, which is
defined by

μ = mean(C), (6)

wheremean(·) is a function that returns the mean of all elements
in matrix C. During the optimization process of the network
ETLN, the weight of the parameter C is not fixed. Therefore,
the value of μ is also constantly changing within the process of
network optimization.

Existing studies have shown that the information transmission
delay between the ipsilateral hemispheres is shorter, and
the information transmission across hemispheres often
requires more time [25], [33]. In general, the delay of
information transmission may have a certain correlation
with the transmission distance. Thus, we introduce the spatial
distance prior information of the brain to constrain the data
distribution of matrix L. Then, the first point is how to define
the spatial distance prior information of the brain. For the
convenience of illustration, we give a schematic diagram as
shown in Fig. 4 to explain how to define the prior information.
In Fig. 4, each node represents a brain region. Near the node, we
give the abbreviation of the brain region and the corresponding
center coordinates, respectively. Suppose there is a causal link
from ANG.L to SFGmed.L. Since both brain regions are located
in the left hemisphere, the transmission distance between them
is defined as the distance between the center coordinates
of the two brain region, i.e., lenANG.L→SFGmed.L =√

(−44− (−5))2 + (−61− 49)2 + (36− 31)2 = 116.82.
Suppose there is a causal link from ANG.L to ANG.R. Since
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Fig. 4. Schematic diagram for brain spatial distance.

the two brain regions are located in different hemispheres,
the definition of the transmission distance between them is
different from the previous one. Studies have shown that the
interaction of the left and right hemispheres of the brain relies
on the corpus callosum [34], which is located roughly in the
center of the brain. In this study, the coordinate (0, 0, 0) is
used to represent the center coordinate of the corpus callosum.
Thus, lenANG.L→ANG.R =

√
(−44)2 + (−61)2 + 362 +√

462 + (−60)2 + 392 = 168.45. Based on the above
calculation method, the pairwise spatial transmission distances
between all brain regions of the AAL atlas can be obtained,
and the prior information is stored in the matrix P. The center
coordinates of each brain region in the AAL atlas can be
obtained from [35]. When the required prior information P is
obtained, the spatial constraint loss is defined as follows:

Lspatial = CE
(
�Lindex,index,

�P index,index

)
, (7)

where index is the complement of the set index in (5). The aim
of the above formula is to constrain the distribution of temporal-
lag values for those brain regions with causality.

D. Model Training and Implementation

The overall objective function of ETLN can be derived by
combing the local consistency loss Llocal and the spatial con-
straint loss Lspatial, as follows:

Gloss = MSE
(
X̂,X

)
+ Llocal + Lspatial,

Dloss = KL(X || X̂), (8)

where Gloss is the generator loss, and MSE(·) is the mean
square loss. Dloss is the discriminator loss, which minimizes
the data distribution difference between the fake data X̂ and the
real data X by Kullback-Leibler divergence.

The detailed structure of the ETLN network is as follows: each
causal structure inference consists of a 1-hidden layer with 200
Tanh units. The discriminator network consists of a 2-hidden
layer with 200 hidden LeakyReLU units. The causal and lag
gates are initialized to 1, except the self-loop term is set to
0. A standard Adam optimizer with a learning rate of 0.001
is used to optimize the model. The epochs of both generator
and discriminator are set to 1000. Our model is implemented in
PyTorch using an NVIDIA GeForce 1080Ti GPU with 11 GB
memory. In order to obtain more accurate modeling results, the

modeling is repeated 32 times for each subject, and the average
value is taken as the final result.

V. EXPERIMENTS

In this section, Section V-A first briefly describes the details of
the 7 comparison methods. Then, the specific details of the clas-
sification step are provided in Section V-B. Finally, Sections V-C
and V-D present the experimental results of comparative meth-
ods and ablation study, respectively.

A. Comparison Methods

To validate the effectiveness of the proposed method, we com-
pare it with many popular methods. According to whether the
brain network contains directional information, these methods
can be divided into two types: correlation-based methods (i.e.,
Pearson correlation-based method (PC) [4], sparse representa-
tion method (SR) [5], low-rank representation method (LR) [21]
and sparse low-rank representation method (SLR) [21]) and
causality-based methods (i.e., Granger causality based method
(GC) [9], linear non-Gaussian acyclic model (LiNGAM) [11]
and transfer entropy (TE) [36]). In fact, causality-based methods
should also include Bayesian network (BN) [13]. However, BN
is not suitable for modeling large-scale (more than 20 nodes)
data. The optimization time of BN grows exponentially as the
number of nodes increases. Since BN is too time-consuming, we
did not add it for comparison. We now briefly summarize these
competing methods as follows.

1) PC method [4]. In the PC method, the edge weight is
defined as the Pearson correlation coefficient between
distinct brain regions.

2) SR method [5]. This method adds an L1 regularization
constraint to the graph to exclude confounding effects
between brain regions.

3) LR method [21]. This model introduces modular prior
knowledge in brain network construction via a low-rank
constraint.

4) SLR method [21]. This method utilizes both sparse and
low-rank constraints to the brain network weight matrix.

5) GC method [9]. This method determines whether there is
a causal link from the i-th brain region to the j-th brain
region based on the Granger causality test.

6) LiNGAM method [13]. The core idea of this method is
that the blood oxygen signal data of each brain region
is a linear combination of the signals of all other brain
regions with no time delay. The regression coefficients
are regarded as the edge weights of the brain network.

7) TE method [36]. This method estimates the direction
of information flow between brain regions based on the
concept of Shannon entropy.

B. Experimental Settings

For a fair comparison, the same feature selection strategy and
classifier are used to test the performance of each brain network
model. Specifically, we take the weight of network edges as fea-
tures, and employ the recursive feature elimination (RFE) [37]

Authorized licensed use limited to: Univ of Calif San Francisco. Downloaded on November 29,2023 at 23:47:00 UTC from IEEE Xplore.  Restrictions apply. 



XIA et al.: STRUCTURE-GUIDED EFFECTIVE AND TEMPORAL-LAG CONNECTIVITY NETWORK FOR REVEALING BRAIN DISORDER 2997

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS

strategy to perform feature selection. Finally, a support vector
machine (SVM) [38] is utilized for classification. The number
of selected features by RFE is set to 1000. The parameters of
SVM are set as follows: the number of iterations is 1000, the
kernel is ‘linear,’ and the regularization parameter is set to 1.0.

In this study, four classification tasks (i.e., NC vs. eMCI,
NC vs. LMCI, eMCI vs. LMCI and NC vs. eMCI vs. LMCI)
are conducted to evaluate the performance of the proposed
method. Prediction accuracy (ACC), sensitivity (SEN), speci-
ficity (SPE), and F1 score are used as evaluation metrics. It is
worth noting that our method can obtain two kinds of brain
network models, including the effective connectivity network
(ECN) and the temporal-lag connectivity network (TCN), while
other methods can only obtain one kind of brain network model.
For a fair comparison, instead of fusing the features of both,
we feed ECN and TCN into the classifier separately to evaluate
their classification performance. Besides, we conduct a standard
10-fold cross-validation strategy to evaluate the classification
performance of all brain network models.

C. Classification Results

The comparison results of all methods are summarized in
Table II, and the best scores are highlighted in bold. From
Table II, it can be seen that our method achieves the best perfor-
mance on all three tasks, which demonstrates the effectiveness
of our method. Furthermore, we can find that SLR has the
worst performance among the four correlation-based methods,
while the classification performance of the other three methods
is roughly the same. The reasons for this can be attributed
to the following two points. First, SLR introduces two types
of constraints at the same time, which makes the constructed
brain network too sparse. As a result, it is difficult to extract
effective features for the classifier training, so SLR shows the
worst classification performance. Secondly, sparsity or low-rank
constraints may not be very effective in eliminating the effects

of confounding factors. Compared with PC, although SR and
LR remove some pseudo-functional connections, the number of
effective features retained by the two methods may be roughly
the same as the number of effective features extracted from the
brain networks constructed by the PC method. Therefore, their
classification performance in these three tasks is roughly the
same.

However, the classification results of GC, LiNGAM, and TE
are not satisfactory in comparison to correlation-based methods.
The reasons for the poor performance of the three methods are
different. The reasons for the failure of GC mainly lie in two
points: on the one hand, the brain network it constructs is a
binary graph, which can obtain fewer effective features than the
weight graph; on the other hand, it is because the temporal-lag
values between all brain regions are set to a fixed value, which is
obviously contrary to the actual situation. Similarly, the reasons
for the failure of LiNGAM can also be attributed to two points:
one is the addition of acyclic constraint to the brain network,
resulting in the constructed brain network being too sparse and
not having enough features to train the classifier; the other is that
it can only model the linear relationship between brain regions,
and cannot fully explore the deeper nonlinear relationship. The
reason for the failure of TE is similar to that of GC. The range
of temporal-lag values for TE is at least one full TR, which is
clearly inconsistent with previous findings [19], [32].

D. Ablation Study

The main contribution of this paper is to design a dual-branch
model, which can effectively estimate causal and temporal-lag
effects between brain regions. Besides, in order to obtain more
accurate estimation results, we also introduce three constraint
rules to guide the modeling of the brain network. To verify
whether each of these innovative components contributes to
the excellent performance, we design four degraded networks
in the ablation study, including 1) we remove the temporal-lag
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Fig. 5. Recognition performance for ablation studies.

inference branch, denoted “ETLN_LagGate,” 2) we remove the
local consistency loss from the loss function of ETLN, denoted
“ETLN_local,” 3) we replace the adaptive mechanism with a
fixed threshold of 0.5, denoted “ETLN_adaptive,” and 4) we
remove the spatial constraint loss from the loss function of
ETLN, denoted “ETLN_spatial”.

Fig. 5 show the experimental results of the ablation study.
It can be seen that ETLN_LagGate obtains the worst perfor-
mance among all variant methods due to ignoring the effect of
temporal-lag. This result suggests that considering the effect of
temporal-lag helps to construct better brain network models.
Comparing the classification results of the other three variants
with ETLN, it can be found that the variant that removes the
spatial constraint mechanism has the most performance degra-
dation, followed by the local consistency constraint mechanism,
and the adaptive mechanism has the least impact on the result.
This result shows that the three constraint mechanisms can
be helpful to improve the classification performance, but the
spatial constraint mechanism is more helpful, followed by the
consistency constraint mechanism, and the adaptive mechanism
helps the least.

As we all known, in order to achieve whole-brain coverage,
complete brain data (i.e., volume) is obtained by sequentially
and repeatedly acquiring images of individual slices. This will
result in a time offset between slices within the 3D volume. The
purpose of slice time correction is to restore time-shifted slices in
the same volume to the same moment. Without slice time correc-
tion, this would result in a time offset between slices within the
same volume. However, the time interval of corresponding slices
between adjacent volumes is fixed (equal to TR), which seems
to have little effect on our research objective: estimating the
average temporal-lag effect between volumes. In order to further
study the impact of this preprocessing step on the results, we have
performed a new set of comparative experiments. Specifically,
we adopt two preprocessing pipelines for the obtained fMRI
data, the only difference between them is whether to perform
slice time correction. We denote the experiment without slice
time correction as “ETLN_ST”.

Fig. 6 shows the classification results of the comparative
experiment on four tasks. From the results, it can be seen that

Fig. 6. Classification results of the comparative experiment under four
tasks.

the classification accuracy of the corresponding brain network
models in both sets of experiments is relatively close to each
task, and there are no significant differences. This indicates
that the slice time correction operation has little effect on the
classification results. For this result, we think there may be two
reasons. On the one hand, as described in the previous paragraph,
the slice time correction operation does not conflict with the
objective of this research, and should have little effect on the
results in theory. On the other hand, ETLN, the brain network
modeling algorithm proposed in this paper, is a deep learning
method with powerful fitting ability. Therefore, fMRI data can
either perform or not perform the slice time correction operation
when the ETLN is executed.

As many comparison methods adopted a standard preprocess-
ing pipeline (including slice time correction) [4], [21], [36], we
also apply the pipeline to our method for a fair comparison.
Finally, the results reported in the rest of the paper are obtained
based on the standard preprocessing pipeline.

VI. DISCUSSION

A. Visualization of the Optimization Process

In order to verify whether the GAN model ETLN constructed
in this paper has an overfitting problem, we show the visualiza-
tion results of the brain network with epochs in Fig. 7. The first
column is the initialization of ECN and TCN, both of which
are a matrix of size 116 × 116. They both set the diagonal
elements to 0 and the other elements to 1. The last column,
namely epoch = 1000, is the finally obtained brain causal and
temporal-lag networks. It can be seen from Fig. 7 that when the
epoch reaches 600, the GAN model ETLN has converged, and
there is almost no change in the follow-up.

Comparing ECN and TCN, it can be found that the two main-
tain good local consistency under different epochs, and there
are some differences at the same time. This may be attributed
to the local consistency loss introduced in the loss function.
Besides, it can be seen from Fig. 7 that in both ECN and TCN,
the value of a small area is significantly greater than that of the
adjacent areas. This may because these brain regions are the
hubs of the brain, and they undertake more tasks of information
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Fig. 7. Visualization results of the average causal and temporal-lag brain networks of all normal subjects with different epochs.

Fig. 8. Visualization results of the most discriminating causal and lag patterns among the three tasks.

transmission and forwarding. This not only leads to a high causal
effect across these brain regions, but also significantly increases
the time required to transmit information among them.

B. Most Discriminative Patterns

Fig. 8 displays the top 20 most discriminative causal and
temporal-lag patterns across the three tasks, respectively. There
are four points to note about the meaning of the circos graph.
First, the color of each arc in the circos graph is randomly
assigned. Second, the wider the width of each arc, the more

important the corresponding connection. Then, the motion di-
rection of the ball in each arc represents the causal relationship
between two brain regions (from cause to effect). Finally, the
value corresponding to each connection represents the average
causal effect or temporal-lag value for the two groups of partici-
pants. For example, for the circos graph in the upper left corner,
the value corresponding to the link SFGdor.R → Vermis10 is
0.296 / 0.249. This means that the average causal effect of the
connection in NC group is 0.296, and the average causal effect
in eMCI group is 0.249. For the circos graph in the lower right
corner, the value corresponding to the link Vermis3→Vermis45
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is 23.45 / 33.05. This means that the average temporal-lag
value of the connection in eMCI group is 23.45 ms, and the
temporal-lag value in LMCI group is 33.05 ms.

Comparing the most discriminative causal patterns identified
by the three tasks, we can draw some interesting observations.
First, many brain regions were jointly recognized as potential
biomarkers for dementia identification by the three tasks, in-
cluding the Vermis10, the Vermis12, the left superior parietal
gyrus (SPG.L), the right caudate nucleus (CAU.R) and the
amygdala (AMYG). This suggests that these brain regions may
be potential biomarkers for dementia recognition. Second, all
three tasks identified Vermis10 as the brain region containing the
most discriminative information. The reason for this may be that
this brain region is relatively close to the corpus callosum, and
much communication information between brain regions needs
to be further transmitted through this brain region. Third, it can
be found that the classifier tends to give higher discriminative
weights to those functional connections that are spatially distant,
especially the connections between the brain and cerebellar
regions. We think this phenomenon is reasonable. The trans-
mission of information flow between distant brain regions may
need to span multiple brain regions, and abnormal alteration in
any node in the transmission path may lead to changes in the
strength of functional connectivity.

Similarly, comparing the most discriminative lag patterns
identified by the three tasks, we can also find some interesting
phenomena. Likewise, many brain regions were also jointly
identified as biomarkers by the three tasks, including the Ver-
mis10, the Vermis9, the Vermis3 and the left inferior temporal
gyrus (ITG.L). But unlike the causal patterns, the most discrim-
inative brain region of the three lag patterns was not consistent.
It can also be observed that the classifier prefers to assign higher
discriminative weights to those functional connections that are
farther away.

Comparing the causal pattern and the lag pattern of the same
task, many functional connections are jointly identified as dis-
criminative features. It is clear that these functional connections
may play a pivotal role in the determination of classification
results. Specifically, for the task NC vs. eMCI, the path from
SFGdor.R to Vermis10 and the path from SMG.L to Vermis10
are jointly identified as abnormal connections. For the task NC
vs. LMCI, the common abnormal connections include the path
from CAU.L to CRBL9.R, the path from CAU.L to CRBL9.L
and the path from HIP.R to Vermis6. The reason for this may
be due to the introduction of the local consistency mechanism
as well as the spatial constraint mechanism. For those brain
regions without causality, the local consistency mechanism con-
strains the temporal-lag values between them to zero. For those
brain regions with causality, the spatial constraint mechanism
constrains the data distribution of temporal-lag values between
them. They both guarantee the local similarity between causal
and lag patterns.

In addition, it can be observed that all six circos graphs
contain some connections in which the causal effects seem to
be strengthened or the temporal-lag values are shortened. This
result seems to be contrary to the clinical observations, but we
believe that this situation is reasonable. For example, suppose

there are two paths from brain region A to brain region B,
one with a shorter total distance and one with a longer total
distance. Previously, much information was transmitted over the
shorter path. If the shorter path is abnormal, much information
will be transmitted over the longer path. This may lead to the
enhancement of the causal effect between the related brain
regions of the longer path. As the interactions between brain
regions belonging to the longer path become active, this may
lead to shorter temporal-lag values between them. Nevertheless,
our results are consistent with clinical experience in terms of
the overall change trend. For example, compared with the NC
group, the causal effect of 10 connections in the eMCI group
was weakened, and the temporal-lag value of 10 connections
was prolonged. The LMCI group was more severe, the causal
effect of 14 connections was weakened, and the temporal-lag
value of 16 connections was prolonged. This result is consistent
with clinical experience, that is, the more severe the disease, the
more severe the cognitive decline.

VII. CONCLUSION

In this paper, we propose a novel framework for inferring the
causal effects and the temporal-lag values between brain regions.
The first point is the design of the network structure, which
embeds the target of the solution into the network model as the
parameters to be learned. The second point is the introduction
of three mechanisms to guide the modeling of brain networks.
The whole network is trained in an end-to-end manner and
achieved excellent performance on the ADNI dataset. The pro-
posed method not only improves the classification performance,
but also provides a new solution for the inference of causal and
temporal-lag relationships among large-scale nodes.
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